If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5t^2+3t-18=0
a = 1.5; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1.5·(-18)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{13}}{2*1.5}=\frac{-3-3\sqrt{13}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{13}}{2*1.5}=\frac{-3+3\sqrt{13}}{3} $
| -5u/9=35 | | -5(x+-5)=5 | | -3/2x=-6x | | w-7/5=10 | | 3x+19÷5=2 | | X+4x+40=85 | | 4x=-12/5 | | -6(p-98)=84 | | -10+8g=46 | | 2=3x+19÷5 | | x+3(x+2)=-2(x-9)x+3(x+2)=−2(x−9) | | 12=3h+3 | | -(m-6)=3m | | -5(x-4)=3 | | 9=c/2+5 | | 7x^2+400x-10000=0 | | -4(d-93)=4 | | -52=17-3p | | 6(y-76)=48 | | 3x+8-6x=24-3x | | h-73/6=3 | | 6=12-b | | (1.5)x=7 | | 4q—5=17 | | (2x-5)x+7)=0 | | g-47/8=6 | | 40-6x+12=3*3-(x+5) | | 9÷z-8=6 | | 40–6x+12=3*3–(x+5) | | (-5/6)x-(1/3)=-7 | | 3x-18°=2x+22 | | 1800=0.3x |